Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 8(2): 251-266, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182682

RESUMEN

The biodiversity impacts of agricultural deforestation vary widely across regions. Previous efforts to explain this variation have focused exclusively on the landscape features and management regimes of agricultural systems, neglecting the potentially critical role of ecological filtering in shaping deforestation tolerance of extant species assemblages at large geographical scales via selection for functional traits. Here we provide a large-scale test of this role using a global database of species abundance ratios between matched agricultural and native forest sites that comprises 71 avian assemblages reported in 44 primary studies, and a companion database of 10 functional traits for all 2,647 species involved. Using meta-analytic, phylogenetic and multivariate methods, we show that beyond agricultural features, filtering by the extent of natural environmental variability and the severity of historical anthropogenic deforestation shapes the varying deforestation impacts across species assemblages. For assemblages under greater environmental variability-proxied by drier and more seasonal climates under a greater disturbance regime-and longer deforestation histories, filtering has attenuated the negative impacts of current deforestation by selecting for functional traits linked to stronger deforestation tolerance. Our study provides a previously largely missing piece of knowledge in understanding and managing the biodiversity consequences of deforestation by agricultural deforestation.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Filogenia , Bosques , Agricultura
2.
Sci Total Environ ; 871: 161789, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716887

RESUMEN

The potential for climate change to affect animal behaviour is widely recognized, yet its possible consequences on aggressiveness are still unclear. If warming and drought limit the availability of food resources, climate change may elicit an increase of intraspecific conflicts stemming from resource competition. By measuring aggressivity indices in a group-living, herbivorous mammal (the Apennine chamois Rupicapra pyrenaica ornata) in two sites differing in habitat quality, and coupling them with estimates of plant productivity, we investigated whether harsh climatic conditions accumulated during the growing season influenced agonistic contests at feeding via vegetation-mediated effects, and their interaction with the site-specific habitat quality. We focused on females, which exhibit intra-group contest competition to access nutritious food patches. Accounting for confounding variables, we found that (1) the aggression rate between foraging individuals increased with the warming accumulated over previous weeks; (2) the probability to deliver more aggressive behaviour patterns toward contestants increased with decreasing rainfall recorded in previous weeks; (3) the effects of cumulative warming and drought on aggressivity indices occurred at time windows spanning 15-30 days, matching those found on vegetation productivity; (4) the effects of unfavourable climatic conditions via vegetation growth on aggressivity were independent of the site-specific habitat quality. Simulations conducted on our model species predict a ~50 % increase in aggression rate following the warming projected over the next 60 years. Where primary productivity will be impacted by warming and drought, our findings suggest that the anticipated climate change scenarios may trigger bottom-up consequences on intraspecific animal conflicts. This study opens the doors for a better understanding of the multifactorial origin of aggression in group-living foragers, emphasising how the escalation of agonistic contests could emerge as a novel response of animal societies to ongoing global warming.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Femenino , Calentamiento Global , Herbivoria , Plantas , Mamíferos
3.
Curr Zool ; 65(3): 237-249, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31391812

RESUMEN

To counteract the negative effects of forest fragmentation on wildlife, it is crucial to maintain functional ecological networks. We identified the ecological networks for 2 mammals with very different degrees of forest specialization, the European badger Meles meles and the Roe deer Capreolus capreolus, by differentiating 4 agroforestry elements as either nodes or connectivity elements, and by defining the distance that provides the functional connectivity between fragments. Species occurrence data were collected in a wide agroecosystem in northern Italy. To test the role of hedgerows, traditional poplar cultivations, short rotation coppices, and reforestations as ecological network elements for the 2 species we applied the method of simulated species perceptions of the landscape (SSPL), comparing the ability of different SSPLs to explain the observed species distribution. All analyses were repeated considering different scenarios of species movement ability through the matrix. Model outputs seem to show that the specialist and highly mobile Roe deer has the same movement ability throughout the matrix (2 km) as the European badger, a smaller, but generalist species. The ecological network identified for the European badger was widespread throughout the area and was composed of woodlands, poplar cultivations and hedgerows as nodes and short rotation coppices as connectivity elements. Conversely, the ecological network of the Roe deer was mostly limited to the main forest areas and was composed of woodlands, poplar cultivations and reforestations as nodes and short rotation coppices and hedgerows as connectivity elements. The degree of forest specialization strongly affects both species perception of habitat and movement ability throughout the matrix, regardless of species size. This has important implications for species conservation.

4.
Behav Processes ; 167: 103909, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31330169

RESUMEN

In temperate ecosystems, seasonality influences animal behaviour. Food availability, weather, photoperiod and endogenous factors relevant to the biological cycle of individuals have been shown as major drivers of temporal changes in activity rhythms and group size/structure of herbivorous species. We evaluated how diurnal female foraging activity and grouping patterns of a mountain herbivore, the Apennine chamois Rupicapra pyrenaica ornata, varied during a decreasing gradient of pasture availability along the summer-autumn progression (July-October), a crucial period for the life cycle of mountain ungulates. Females increased diurnal foraging activity, possibly because of constrains elicited by variation in environmental factors. Size of mixed groups did not vary, in contrast with the hypothesis that groups should be smaller when pasture availability is lower. Proportion of females in groups increased, possibly suggesting that they concentrated on patchily distributed nutritious forbs. Occurrence of yearlings in groups decreased, which may have depended on dispersal of chamois in this age class. Presence of kids in groups did not show variation through summer-autumn, suggesting a close mother-juvenile relationship even at the end of weaning and/or, possibly, low summer mortality. Both endogenous and environmental factors contribute to shape variation in foraging activity and grouping behaviour in mountain-dwelling herbivores.


Asunto(s)
Conducta Apetitiva , Ritmo Circadiano , Rupicapra , Estaciones del Año , Temperatura , Factores de Edad , Animales , Ecosistema , Femenino , Herbivoria , Masculino , Fotoperiodo , Factores Sexuales
5.
PLoS One ; 11(2): e0149323, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26918960

RESUMEN

Nowadays we are seeing the largest biodiversity loss since the extinction of the dinosaurs. To conserve biodiversity it is essential to plan protected areas using a prioritization approach, which takes into account the current biodiversity value of the sites. Considering that in the Mediterranean Basin the agro-ecosystems are one of the most important parts of the landscape, the conservation of crops is essential to biodiversity conservation. In the framework of agro-ecosystem conservation, farmland birds play an important role because of their representativeness, and because of their steady decline in the last Century in Western Europe. The main aim of this research was to define if crop dominated landscapes could be useful for biodiversity conservation in a Mediterranean area in which the landscape was modified by humans in the last thousand years and was affected by the important biogeographical phenomenon of peninsula effect. To assess this, we identify the hotspots and the coldspots of bird diversity in southern Italy both during the winter and in the breeding season. In particular we used a scoring method, defining a biodiversity value for each cell of a 1-km grid superimposed on the study area, using data collected by fieldwork following a stratified random sampling design. This value was analysed by a multiple linear regression analysis and was predicted in the whole study area. Then we defined the hotspots and the coldspots of the study area as 15% of the cells with higher and lower value of biodiversity, respectively. Finally, we used GAP analysis to compare hotspot distribution with the current network of protected areas. This study showed that the winter hotspots of bird diversity were associated with marshes and water bodies, shrublands, and irrigated crops, whilst the breeding hotspots were associated with more natural areas (e.g. transitional wood/shrubs), such as open areas (natural grasslands, pastures and not irrigated crops). Moreover, the results underlined the negative effects of permanent crops, such as vineyards, olive groves, and orchards, in particular during the winter season. This research highlights the importance of farmland areas mainly for wintering species and the importance of open areas for breeding species in the Mediterranean Basin. This may be true even when the species' spatial distribution could be affected by biogeography. An important result showed that the hotspots for breeding species cannot be used as a surrogate for the wintering species, which were often not considered in the planning of protected areas.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Productos Agrícolas , Rotación , Animales , Aves/fisiología , Cruzamiento , Región Mediterránea , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...